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Sex‑dependent effects of chronic 
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Abstract 

Background  Obstructive sleep apnea (OSA) affects 10–26% of adults in the United States with known sex differ-
ences in prevalence and severity. OSA is characterized by elevated inflammation, oxidative stress (OS), and cognitive 
dysfunction. However, there is a paucity of data regarding the role of sex in the OSA phenotype. Prior findings suggest 
women exhibit different OSA phenotypes than men, which could result in under-reported OSA prevalence in women. 
To examine the relationship between OSA and sex, we used chronic intermittent hypoxia (CIH) to model OSA in rats. 
We hypothesized that CIH would produce sex-dependent phenotypes of inflammation, OS, and cognitive dysfunc-
tion, and these sex differences would be dependent on mitochondrial oxidative stress (mtOS).

Methods  Adult male and female Sprague Dawley rats were exposed to CIH or normoxia for 14 days to examine 
the impact of sex on CIH-associated circulating inflammation (IL-1β, IL-6, IL-10, TNF-α), circulating steroid hormones, 
circulating OS, and behavior (recollective and spatial memory; gross and fine motor function; anxiety-like behaviors; 
and compulsive behaviors). Rats were implanted with osmotic minipumps containing either a mitochondria-targeting 
antioxidant (MitoTEMPOL) or saline vehicle 1 week prior to CIH initiation to examine how inhibiting mtOS would 
affect the CIH phenotype.

Results  Sex-specific differences in CIH-induced inflammation, OS, motor function, and compulsive behavior were 
observed. In female rats, CIH increased inflammation (plasma IL-6 and IL-6/IL-10 ratio) and impaired fine motor func-
tion. Conversely, CIH elevated circulating OS and compulsivity in males. These sex-dependent effects of CIH were 
blocked by inhibiting mtOS. Interestingly, CIH impaired recollective memory in both sexes but these effects were 
not mediated by mtOS. No effects of CIH were observed on spatial memory, gross motor function, or anxiety-like 
behavior, regardless of sex.

Conclusions  Our results indicate that the impact of CIH is dependent on sex, such as an inflammatory response 
and OS response in females and males, respectively, that are mediated by mtOS. Interestingly, there was no effect 
of sex or mtOS in CIH-induced impairment of recollective memory. These results indicate that mtOS is involved 
in the sex differences observed in CIH, but a different mechanism underlies CIH-induced memory impairments.
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Background
Obstructive sleep apnea (OSA) is a highly prevalent 
sleeping disorder which is observed to affect between 
10 and 26% of adults [1–3]. Men are 2–4 times more 
likely to be diagnosed with OSA than women [1–3]. 
However, the prevalence of OSA may be under-
reported for women, as OSA symptoms are different in 
women compared to men [4]. Women are more likely 
to present with atypical symptoms of OSA, even in mild 
OSA, that is associated with lower levels of apnea–
hypopnea index (AHI) scores (hypoxic events per hour 
of sleeping) than men [4, 5]. Symptoms of OSA include 
cognitive dysfunction, anxiety, and compulsivity [6–
12], along with increased inflammation and oxidative 
stress (OS) [13–18], decreased testosterone in men 
[19–21], and decreased estradiol and progesterone in 
women [22–24]. Though women have been observed to 
have greater risk for OSA-associated cognitive dysfunc-
tion [3, 25], the role of sex on OSA symptoms is not 
completely understood.

Patients diagnosed with OSA are typically treated with 
continuous positive airway pressure (CPAP) machines, 
the gold standard for therapy [26–28]. Effective CPAP 
therapy can reduce inflammation, OS, and cognitive 
dysfunction [27, 29–31]. However, adherence to CPAP 
therapy is a major issue, as 15–40% of patients are non-
compliant with prescribed machine usage [26–28]. Even 
patients that are adherent to CPAP therapy may not be 
receiving proper treatment, due to anatomical variations 
or ineffective machine air pressure titration [26, 28]. This 
lack of efficacy has led to increased research to determine 
OSA mechanisms with the goal of developing conjunc-
tive pharmaceutical therapies for OSA [32–34]. Current 
drugs that are approved for OSA treatment are focused 
on symptom therapy, such as reducing daytime sleepi-
ness and improving attention [33, 34] rather than OSA 
pathophysiology as a result of OSA hypoxia.

Hypoxia induced by OSA is observed to increase many 
circulating markers of OS and inflammation [13–18]. 
This can induce a feed-forward cycle, in which chronic 
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Plain language summary 

Sleep apnea is a common sleeping condition in adults with a wide range of symptoms that include inflammation, 
oxidative stress, memory problems, anxiety, and compulsivity. Men are diagnosed with sleep apnea more often 
than women. Although there is limited information on how sleep apnea affects men and women differently, previ-
ous studies suggest that women may exhibit different sleep apnea symptoms than men. To examine the impact 
of male and female sex on common sleep apnea symptoms, we exposed adult male and female rats to a model 
of sleep apnea called chronic intermittent hypoxia (CIH). We found that many effects of CIH were different in males 
and females. CIH females had increased inflammation and motor problems, whereas CIH males had increased 
oxidative stress and compulsivity. To investigate the reason for these CIH sex differences, we blocked mitochondrial 
oxidative stress. Blocking mitochondrial oxidative stress decreased CIH associated sex differences. However, block-
ing mitochondrial oxidative stress had no impact on CIH-induced memory impairment that was observed in male 
and female rats. Our findings support previous reports that suggest that women exhibit different sleep apnea symp-
toms than men. Further, we extend these findings by showing that mitochondrial oxidative stress is involved in these 
sex differences. Clinically, patients diagnosed with sleep apnea are typically treated with continuous positive airway 
pressure (CPAP) machines, which have high rates of non-compliance (15–40%). Therefore, understanding why sleep 
apnea is causing these symptoms will be important in developing therapeutics.
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inflammation increases OS [35, 36], and chronic OS can 
increase inflammation [37, 38]. In addition, sex also plays 
a role in OS and inflammation [39, 40]. Women exhibit 
higher baseline levels of OS compared to men [41–43]. 
Furthermore, women experience greater levels of inflam-
mation and autoimmunity compared to men [44–46]. 
Based on these findings, sex differences observed in OSA 
may be related to basal sex differences in inflammatory 
and OS status. Since the mitochondria are one of the 
primary generators of OS within the cell [47, 48] and 
mitochondrial dysfunction has been observed in OSA 
[49–51], mitochondrial OS (mtOS) may mediate sex dif-
ferences in OSA.

To examine the impact of sex on OSA-associated 
symptoms (inflammation, OS, memory, motor, anxiety, 
compulsivity), we utilized an experimental rat model of 
OSA called chronic intermittent hypoxia (CIH). CIH 
exposure replicates the fragmented episodes of hypoxia 
observed in OSA [52]. Further, to examine the mecha-
nisms of mtOS on sex differences in CIH, we implanted 
osmotic pumps subcutaneously in a subgroup of rats to 
continuously administer a mitochondria-targeting super-
oxide dismutase mimetic, MitoTEMPOL (MT), to block 
mtOS. The inflammatory, OS, and behavioral phenotypes 
of CIH in males are clearly defined. CIH increases inflam-
mation [6, 53, 54], increases OS [6, 55, 56], impairs rec-
ollective memory [57–59], impairs spatial learning and 
memory [53, 60–62], and increases anxiety-like behavior 
[57, 58, 63, 64]. Additionally, we have previously reported 
that CIH reduced testosterone and did not affect corti-
costerone in young adult male rats [65]. Studies examin-
ing sex as a biological variable in CIH are scarce. Most 
of these studies have been conducted only in mice, show-
ing CIH increased circulating OS in male but not female 
mice [55] and impaired spatial learning and memory in 
ovariectomized female mice but not intact females [66]. 
Given the limited data on the effects of CIH in females, 
we predicted that CIH would produce sex-dependent 
increases in inflammation and OS, alongside cognitive 
dysfunction. Further, we predicted that inhibiting mtOS 
would prevent the CIH phenotype of increased inflam-
mation, increased OS, and cognitive dysfunction.

Methods
Animals
All experiments were conducted using adult virgin 
Sprague Dawley male and female rats (aged 3–4 months, 
Charles River, Wilmington, MA). Male and female rats 
were housed in separate rooms in our animal facility on 
a 12-h (hr) reverse light cycle (lights were off at 09:00). 
Reverse lighting allowed behavioral testing to be con-
ducted during the active phase of the circadian cycle. 
Food and water were provided ad  libitum. All rats were 

randomly assigned to either vehicle or MT, and either 
normoxia (room air) or CIH treatment conditions. Our 
original groups were planned to be 6–8 rats per group. 
However, due to unforeseen circumstances (i.e., severe 
winter storms in Texas) that terminated the CIH soft-
ware protocol that intermittently decreases oxygen 
levels in the chambers prior to collection of plasma, addi-
tional cohorts of animals were included to collect suffi-
cient plasma for analysis. All cohorts were behaviorally 
tested to allow for consistent experimental protocols in 
the plasma cohorts. The following groups sizes reflect 
the maximum number of rats per group that were ana-
lyzed. Female: Normoxic Vehicle (n = 10), Normoxic MT 
(n = 6), CIH Vehicle (n = 10), CIH MT (n = 10); Male: 
Normoxic Vehicle (n = 13), Normoxic MT (n = 9), CIH 
Vehicle (n = 7), CIH MT (n = 7). To acclimatize the rats 
to operator handling and reduce stress responses during 
behavior testing, rats were handled daily, beginning one 
week prior to the start of behavior testing. At the conclu-
sion of behavior testing, the rats were anesthetized with 
2–3% isoflurane and euthanized via decapitation dur-
ing the active phase of the circadian cycle (09:00–11:00). 
All experiments were conducted in agreement with the 
Guide for the Care and Use of Laboratory Animals of the 
National Institutes of Health and the ARRIVE guidelines. 
These protocols were approved by the Institutional Ani-
mal Care and Use Committee of the University of North 
Texas Health Science Center.

Osmotic minipump implantation
One week prior to the initiation of CIH, all rats were 
instrumented with an osmotic minipump (Alzet Mini-
Osmotic Pump Model 2002, Durect Corporation, 
Cupertino, CA) implanted subcutaneously between the 
scapula [67]. Minipumps contained either 0.9% saline 
vehicle or MitoTEMPOL (0.7  mg/kg/day; Caymen 
Chemical Company, Ann Arbor, MI; MT) dissolved in 
saline. MT combines the antioxidant moiety TEMPOL, 
with a lipophilic cation triphenylphosphonium [68, 
69]. Triphenylphosphonium increases mitochondrial 
aggregation of MT by several 100-fold over TEMPOL 
alone [69–71]. MT has been observed to reduce mtOS 
in  vitro and in  vivo [71, 72]. Drugs like MT are easily 
administered with multiple biologically active routes of 
administration and high blood–brain barrier perme-
ability [73–75]. The dose of MT was chosen based on 
previous in vivo studies [72, 76, 77]. To ensure proper 
osmotic function as indicated by bubbling present on 
the surface of pumps, all pumps were incubated in a 
37 °C water bath for at least 24 h prior to implantation. 
Surgeries were performed using aseptic techniques 
with isoflurane (2–3%) anesthetic.
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Chronic intermittent hypoxia protocol
One week prior to the initiation of the CIH protocol, the 
home cages (clear plastic containers) were placed into 
Oxycycler chambers (76.2 × 50.8 × 50.8  cm, BioSpherix, 
Lacona, NY, USA) to acclimatize the rats. During their 
sleep phase of the circadian cycle, CIH was performed 
for 8 h starting at 21:00. The CIH protocol consisted of 
intermittent oxygen reduction from 21% (room air) to 
10% in 6-min cycles per hour (i.e., 10 cycles/h) over 8 h/
day for a period of 14 days, as previously described [6, 52, 
78, 79]. 10 CIH cycles per hour results in an apnea–hypo-
pnea index (AHI) of 10, which is consistent with mild 
sleep apnea in humans [31, 79].

Behavioral tasks
Behavioral studies were conducted between days 8 and 
14 of CIH from 09:45 to 17:00 during the active phase of 
the circadian cycle. The order of the behavior tests was 
randomized. Male and female rats were behaviorally 
tested in separate cohorts to prevent potential confound-
ing effects of pheromones on behavior [80, 81]. All testing 
equipment (e.g., marbles, arenas, tanks) were thoroughly 
cleaned with 70% ethanol between each rat. All behavior 
studies were conducted under red lighting and recorded 
for later analysis by an investigator blinded to treatment 
groups. Behavior tests were used to assess compulsive 
behaviors (marble burying test) [82, 83], fine motor func-
tion (footfalls, rearing behavior) [56], anxiety-like behav-
iors (center entries and center duration in an open field) 
[84, 85], spatial learning and memory (Morris water 
maze) [84, 86], and recollective memory (novel object) 
[87, 88]. Rats have been observed to exhibit learning in 
response to repeated testing in similar environments, 
which has been described as a test battery effect [89–91]. 
To avoid a learning confound due to battery testing (e.g., 
open field tests [89–91] and Morris water maze [89, 90]), 
one behavioral task per index of interest was performed 
[78].

Modified open field: fine motor function
Fine motor function was assessed using a small novel 
open field arena (40.64 × 40.64 × 38.1 cm) with a bi-direc-
tional main field bar (San Diego Instruments Photobeam 
Activity System; Open Field Arena), as previously pub-
lished [52, 56, 78]. To increase the difficulty of locomo-
tion, a wire mesh platform elevated 2 cm above the floor 
was placed in the arena. The rats were allowed 10 min to 
explore the arena. Fine motor function was classified by 
distance traveled, rearing behavior (assisted, unassisted, 
total), and footfalls past the elevated wire mesh. Individ-
ual rears were classified as either assisted or unassisted. 

These were defined by whether the animal reared with 
(assisted) or without (unassisted) its forelimbs braced 
against the wall [52].

Open field: gross motor function and anxiety‑like behavior
Using a large novel open field arena 
(60.96 × 60.9 × 38.1  cm), we assessed gross motor func-
tion and anxiety-like behavior during a 5-min trial. 
Behaviors were recorded using ANY-maze software (v. 
5.14, Stoelting CO.). This open field duration has been 
previously observed to be sensitive to differences in 
anxiety-like behavior and stress in rats [92–94]. Gross 
motor function was examined by distance traveled in the 
open field. Anxiety-like behaviors were tracked by num-
ber of entries (frequency) to the center of the field and 
time spent (duration) within the center of the open field 
[56, 78, 95]. In addition, this task allowed habituation to 
the large open field arena in order to conduct the novel 
object recognition task.

Novel object recognition task: recollective memory
Following habituation to the open field test using the 
large arena (60.96 × 60.9 × 38.1  cm), we conducted the 
novel object recognition task [56]. In this task, two 
identical objects (building blocks) were placed in adja-
cent corners of the arena, and the rats were given 5 min 
to interact with the objects and then removed from the 
arena. One hour later, one of the objects was replaced 
with a novel object (spherical toy ball), and the rats 
were given 3 min to explore the arena and interact with 
the objects. Contacts with the novel object and latency 
to the novel object were recorded as measures of short-
term recollective memory retention [56, 87, 88]. Rats 
that only engaged with the familiar object were marked 
as performing zero contacts at the maximum test latency 
(180 s).

Morris water maze: spatial learning and memory
To examine spatial memory, the Morris water maze test 
was used according to our published protocols [56, 78]. 
Behaviors were recorded using ANY-maze software (v. 
5.14, Stoelting Co.). Over a period of 4  days, rats were 
trained to find a submerged platform in a pool filled with 
opaque water (23–25 °C) and remain on the platform for 
20 s until removed by the operator. Day 1 of training con-
sisted of visible platform pre-training where the platform 
was moved on each trial (3/day). On days 2–4, the plat-
form was submerged for spatial training and remained in 
the same position for all trials. A learning index (LI) was 
generated using the latency data from days 2, 3, and 4 of 
spatial training. The LI was generated as the sum total of 
the average latency to the target of all trials in blocked 
means for each training day [78, 96]. The LI scores were 
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used as indicators of spatial learning where lower LI 
scores indicated greater spatial learning ability [96, 97]. 
Spatial memory was assessed following 4  days of train-
ing, in which each rat was administered a probe trial (the 
underwater platform was removed). Latency and path-
length to the target during the probe trial were used as 
indicators of spatial memory.

Marble burying test: compulsive behavior
To examine compulsive behaviors, the marble bury-
ing test was conducted following published protocols 
[78, 82, 83]. To conduct this test, the floor of the test-
ing arena (50 × 25 × 30 cm) was thoroughly covered with 
1  cm of rodent bedding litter to allow the rats to easily 
bury marbles. Twenty marbles of similar color and size 
(1.5 cm) were spaced evenly in a 4 × 5 grid on one side of 
the arena base. Each rat was given 10 min to explore and 
interact with the marbles. Operators visually monitored 
the experiment and manually recorded behaviors. After 
10 min, the rat was removed and the number of marbles 
buried (75% or more) was photographed and quantified.

Sample collection
At the conclusion of behavior tests, rats were anesthe-
tized with isoflurane (2–3%) and decapitated during the 
first 2 h of the rats’ active phase of the circadian rhythm 
to collect tissue and plasma samples [6, 52, 56, 78]. Trunk 
blood was collected in EDTA tubes, and then centrifuged 
at 2000 × g for 10 min at 4  °C to collect plasma. Plasma 
was stored at − 80 °C until assayed for circulating inflam-
mation and oxidized proteins.

High throughput multiplex: inflammation panel
A MILLIPLEX® rat cytokine/chemokine magnetic bead 
panel (Sigma Millipore, Cat # RECYTMAG-65  K) uti-
lizing antibodies against IL-1β, IL-6, IL-10, and TNF-α 
was used to quantify circulating inflammatory cytokines. 
IL-6, TNF-α, and IL-1β were selected as common pro-
inflammatory cytokines [98–100], while IL-10 was 
selected as a common anti-inflammatory cytokine [101]. 
All samples were diluted 1:2 in assay buffer prior to run-
ning the assay according to manufacturer’s instructions. 
Samples were run in duplicate and cytokines were meas-
ured on Luminex® 200™ using xPONENT® software 
version 4.3 (Luminex Corporation, Austin, TX). Quality 
control values for each cytokine were within the range 
provided by the manufacturer. The ratio of IL-6/IL-10 
was used to investigate the overall relationship between 
pro- and anti-inflammatory cytokines [102].

High throughput multiplex: steroid hormone panel
A MILLIPLEX® multi-species hormone magnetic bead 
panel (Sigma Millipore, Cat # MSHMAG-21 K) utilizing 

antibodies against corticosterone, estradiol, testosterone, 
and progesterone were used to quantify circulating ster-
oid hormones. Steroid hormones were extracted from 
plasma via acetonitrile preparation as instructed by the 
manufacturer and previously published [78, 103]. Briefly, 
150 µl of plasma was diluted in 225 µl acetonitrile, vor-
texed, and incubated at room temperature for 10  min. 
Samples were then centrifuged at 17,000 × g for 5 min at 
4 °C. Supernatants were dried via vacuum centrifugation, 
and pellets were reconstituted in 120 µl assay buffer prior 
to analysis. Samples were run in duplicate and an 18-h 
overnight incubation was performed according to man-
ufacturer instructions. Hormones were measured on a 
Luminex® 200™ instrument using xPONENT® software 
version 4.3 (Luminex Corporation, Austin, TX). Quality 
control values for each hormone were within the range 
provided by the manufacturer.

Advanced oxidation protein products assay
Circulating plasma OS was assayed using OxiSelect 
Advanced Oxidation Protein Products (AOPP) kit (Cell 
Biolabs, Inc., San Diego, CA) according to our previously 
published protocols [6, 52]. The micromolar (µM) con-
centration of oxidized proteins in the plasma were meas-
ured relative to a known standard. Chloramine in the kit 
reacts with oxidized proteins to produce a color change, 
which is read at 340  nm. To account for colorimetric 
interference from the plasma samples, a background cor-
rection was performed for all samples. All samples were 
diluted 1:2 in assay buffer for analysis.

Statistical analysis
Statistical analyses were conducted in IBM® SPSS® 
(SPSS® v. 29.0.0, IBM®, 2022). Normality of data dis-
tribution was tested using the Shapiro–Wilk test. Data 
with non-Gaussian distribution were normalized by 
log base 10 transformation (x = lg10(x)) or by square 
root transformation (x = sqrt(x)) through the SPSS® 
transformation function. All data which were normal-
ized for analysis are identified as “transformed” in the 
respective figure or table legend. Outliers greater than 
2 standard deviations from the mean were removed 
from analysis. 3-way ANOVAs were conducted using 
the factors of CIH, drug treatment, and sex. For all 
analyses, we provide the F values, degrees of free-
dom, p-values, and η2 (measure of effect size). Follow-
ing ANOVA testing, a Fisher’s LSD post-hoc test was 
used to determine specific group differences for sig-
nificant results. Results are presented as mean ± S.E.M. 
unless otherwise indicated. Significance was defined 
as p ≤ 0.05. Post-hoc significance is indicated in fig-
ures and tables by unique letters (p ≤ 0.05). Individual 
letters reflect sets of data which are not significantly 
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different from each other. For example, if two bars 
within a graph have the letter ‘a’, then these two groups 
are not significantly different from each other. All fig-
ures in which multiple letters are presented together 
(e.g., abc) refer to unique comparisons of a, b, and c, 
respectively. All post-hoc comparisons are unique to 
the specific figure or panel within the figure.

Results
CIH induced a pro‑inflammatory state in female rats 
that was reduced by blocking mitochondrial oxidative 
stress
Levels of circulating IL-6 were dependent on CIH 
(p = 0.003) and inhibition of mtOS (p = 0.019; Fig. 1A). 
In addition, significant interactions between CIH 
and sex (p = 0.010) and CIH and MT (p = 0.016) were 
observed on IL-6 levels (Fig. 1A). CIH specifically ele-
vated IL-6 levels in females (p ≤ 0.05), which was not 

Fig. 1  Relationship between pro- and anti-inflammatory cytokines. CIH shifted females to a pro-inflammatory state. CIH specifically elevated IL-6 
levels in females, which was not affected by MT (A). MT lowered IL-6 levels in normoxic but not CIH rats (A). Vehicle female rats exposed to CIH had 
lower IL-10 levels (B). In CIH females, MT elevated IL-10 levels (B). The IL-6/IL-10 ratio was only significantly elevated in vehicle CIH females (C). In 
males, MT lowered the IL-6/IL-10 ratio only in the normoxic rats (C). Data for inflammatory cytokines was log transformed for analysis. Raw values are 
shown and error bars denote mean ± S.E.M. Analyzed by 3-way ANOVA with Fisher’s LSD multiple comparisons tests. ANOVA significance indicated 
by: ***p < 0.001; Post-hoc significance indicated by unique letters (p ≤ 0.05). Significant effects observed (A): CIH (F1, 38 = 10.123; p = 0.003; η2 = 0.146); 
MT (F1, 38 = 6.055; p = 0.019; η2 = 0.087); CIH X Sex (F1, 38 = 7.369; p = 0.010; η2 = 0.106); (F1, 38 = 6.348; p = 0.016; η2 = 0.091). Significant effects observed 
(B): CIH X MT (F1, 40 = 4.437; p = 0.041; η2 = 0.083); CIH X Sex X MT (F1, 40 = 5.412; p = 0.025; η2 = 0.101). Significant effects observed (C): CIH (F1, 38 = 7.403; 
p = 0.010; η2 = 0.110); CIH X Sex (F1, 38 = 7.334; p = 0.010; η2 = 0.109); CIH X Sex X MT (F1, 38 = 9.344; p = 0.004; η2 = 0.139). Individual letters reflect sets 
of data which are not significantly different from each other. Should two bars within a graph have the same letter, then these two groups are 
not significantly different from each other. All figures in which multiple letters are presented together (e.g., abc) refer to unique comparisons of a, b, 
and c respectively. CIH chronic intermittent hypoxia, MT MitoTEMPOL
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affected by MT (Fig.  1A). MT lowered IL-6 levels in 
normoxic rats but not CIH rats (p ≤ 0.05). IL-10 lev-
els were also dependent on CIH, sex, and inhibition of 
mtOS with MT. Significant interactions between CIH 
and MT (p = 0.041) and CIH, sex, and MT (p = 0.025) 
were observed on IL-10 levels (Fig.  1B). These inter-
actions were observed only in the female rats. Vehi-
cle female rats exposed to CIH had lower IL-10 levels 
(p ≤ 0.05). In CIH females, MT elevated IL-10 levels 
(p ≤ 0.05). When comparing IL-6 to IL-10 levels, the 
ratio was dependent on CIH (p = 0.010), the interaction 
of CIH and sex (p = 0.010) and the interaction of CIH, 
sex and inhibition of mtOS (p = 0.004; Fig.  1C). The 
IL-6/IL-10 ratio was only significantly elevated in vehi-
cle CIH females (p ≤ 0.05). In males, MT lowered the 
IL-6/IL-10 ratio, though this was only in the normoxic 
rats (p ≤ 0.05).

Circulating IL-1β levels were dependent on CIH, sex, 
and inhibition of mtOS with MT (p = 0.024; Fig.  2A). 
This effect was specifically in males, as inhibition 
of mtOS lowered IL-1β levels only in CIH exposed 
males (p ≤ 0.05). Normoxic MT males had higher lev-
els of IL-1β than normoxic MT females (p ≤ 0.05). We 
observed a significant effect of CIH (p = 0.022), and 
multiple interactions between CIH and sex (p = 0.019) 
and CIH and MT (p = 0.028) in levels of TNF-α 
(Fig. 2B). Specifically, CIH increased circulating TNF-α 
levels in females, but not males, and had the greatest 
effect in MT females (p ≤ 0.05).

CIH did not affect circulating steroid hormones
We observed that male rats had higher circulating testos-
terone levels than females (p < 0.001; Fig. 3A), regardless 
of CIH or inhibition of mtOS with MT. Female rats were 
also observed to have higher circulating progesterone 
levels than males (p < 0.001; Fig. 3B), regardless of CIH or 
inhibition of mtOS with MT. No effects of CIH, sex, or 
mtOS inhibition on circulating estradiol or corticoster-
one levels was observed (Additional file 1: Table S1).

CIH increased circulating oxidative stress in males 
that was reduced by blocking mitochondrial oxidative 
stress
We observed that circulating OS (plasma oxidized pro-
teins; AOPP) was dependent on CIH, sex, and inhibition 
of mtOS with MT: main effects of CIH (p = 0.049), sex 
(p < 0.001), and MT were observed on AOPP (p < 0.001; 
Fig. 4). We also observed significant interactions between 
CIH and sex (p = 0.015) and between CIH, sex, and MT 
on AOPP (p = 0.014; Fig.  4). Overall, AOPP concentra-
tions were higher in females than males (p ≤ 0.05). Nor-
moxic females had the highest AOPP concentrations, 
which were reduced by MT (p ≤ 0.05). Normoxic MT 
males had the lowest AOPP concentrations, which were 
significantly lower than all females (p ≤ 0.05). Exposure 
to CIH exhibited sex-dependent effects. CIH reduced 
AOPP concentrations in females (p ≤ 0.05), and inhibition 
of mtOS using MT only reduced AOPP concentrations in 
normoxic females with no effect in CIH females. In con-
trast to females, CIH increased AOPP concentrations 

Fig. 2  Additional pro-inflammatory cytokines. Pro-inflammatory cytokines were increased in both males and females by CIH. MT only lowered 
IL-1β levels in males (A). Normoxic MT males had higher levels of IL-1β levels than normoxic MT females (A). CIH increased TNF-α levels in females, 
particularly in MT females (B). Data for inflammatory cytokines was log transformed for analysis. Raw values are shown and error bars denote 
mean ± S.E.M. Analyzed by 3-way ANOVA with Fisher’s LSD multiple comparisons tests. ANOVA significance indicated by: ***p < 0.001; Post-hoc 
significance indicated by unique letters (p ≤ 0.05). Significant effect observed (A): CIH X Sex X MT (F1, 39 = 5.558; p = 0.024; η2 = 0.111). Significant 
effects observed (B): CIH (F1, 39 = 5.726; p = 0.022; η2 = 0.097); CIH X Sex (F1, 39 = 5.968; p = 0.019; η2 = 0.101); CIH X MT (F1, 39 = 5.203; p = 0.028; 
η2 = 0.088). CIH chronic intermittent hypoxia, MT MitoTEMPOL



Page 8 of 17Mabry et al. Biology of Sex Differences           (2024) 15:38 

in vehicle males (p ≤ 0.05), and this CIH-induced OS 
was blocked by inhibiting mtOS with MT. AOPP con-
centrations in CIH vehicle males were increased to 

levels observed in females (except MT normoxic females) 
(p ≤ 0.05).

CIH impaired recollective memory in male and female 
rats, which was unaffected by inhibiting mitochondrial 
oxidative stress
Recollective memory was measured in the novel object 
recognition task. CIH significantly increased latency to 
the novel object (p < 0.001; Fig.  5A), and this memory 
impairment was unaffected by blocking mtOS with MT. 
Females also had shorter latency to the novel object 
than males (p = 0.040; Fig.  5A), especially in normoxic 
females compared to CIH males (p ≤ 0.05). In addition to 
increasing latency to the novel object, CIH significantly 
decreased novel object contacts (p = 0.003; Fig. 5B) with 
the greatest effect seen in vehicle females and MT males 
(p ≤ 0.05). No effects of sex or inhibiting mtOS with MT 
were observed on novel object contacts (Fig. 5B).

We also examined spatial learning during the Morris 
water maze. No effects of CIH, sex, or MT were observed 
on LI (Additional file  1: Table  S2). Next, we examined 
spatial memory by performing a probe trial test on the 
final day of the Morris water maze. No effects of CIH, sex 
or inhibition of mtOS with MT were observed on latency 
to the probe target or pathlength to the probe target in 
the Morris water maze (Additional file 1: Table S2).

CIH impaired fine motor function in female rats 
that was reduced by blocking mitochondrial oxidative 
stress
To examine gross motor function, we used a large novel 
open field (60.96 × 60.9 × 38.1  cm). We observed that 

Fig. 3  Circulating sex steroid hormones. Male rats had higher levels of circulating testosterone than females (A). Female rats had higher levels 
of progesterone than males (B). Raw values are shown and error bars denote mean ± S.E.M. Analyzed by 3-way ANOVA with Fisher’s LSD multiple 
comparisons tests. ANOVA significance indicated by: ***p < 0.001; Post-hoc significance indicated by unique letters (p ≤ 0.05). Significant effect 
observed (A): Sex (F1, 41 = 18.173; p < 0.001; η2 = 0.280). Significant effect observed (B): Sex (F1, 43 = 39.238; p < 0.001; η2 = 0.452). CIH chronic 
intermittent hypoxia, MT MitoTEMPOL

Fig. 4  Circulating oxidative stress. AOPP concentrations were 
dependent on CIH, sex, and MT. In female rats, normoxic females had 
the highest AOPP concentrations, and these were reduced by MT. 
CIH also reduced AOPP concentrations in vehicle females, but did 
not affect AOPP concentrations in MT females. AOPP concentrations 
were higher in females than males. In vehicle males, CIH increased 
AOPP concentrations, and this effect was blocked by MT. Raw values 
are shown and error bars denote mean ± S.E.M. Analyzed by 3-way 
ANOVA with Fisher’s LSD multiple comparisons tests. ANOVA 
significance indicated by: *p ≤ 0.05; **p ≤ 0.01; ***p < 0.001; Post-hoc 
significance indicated by unique letters (p ≤ 0.05). Significant effects 
observed: CIH (F1, 46 = 4.071; p = 0.049; η2 = 0.040); Sex (F1, 46 = 18.743; 
p < 0.001; η2 = 0.184); MT (F1, 46 = 19.286; p < 0.001; η2 = 0.190); CIH X 
Sex (F1, 46 = 6.432; p = 0.015; η2 = 0.063); CIH X Sex X MT (F1, 46 = 6.590; 
p = 0.014; η2 = 0.065). AOPP advanced oxidation protein products, CIH 
chronic intermittent hypoxia, MT MitoTEMPOL
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female rats traveled farther than male rats (p = 0.002; 
Fig. 6A), particularly compared to CIH males with MT 
treatment (p ≤ 0.05). No effects of CIH or mtOS inhibi-
tion with MT were observed on distance traveled in the 
open field (Fig. 6A).

Next, we examined fine motor function using a novel 
modified open field (MOF; 40.64 × 40.64 × 38.1  cm) in 
which a wire mesh platform elevated 2 cm above the floor 
was placed in the arena. We observed a significant effect 
of CIH on MOF distance traveled (p = 0.034; Fig. 6B). In 
addition, we observed a significant interaction between 

Fig. 5  Recollective memory. CIH impaired recollective memory in the novel object recognition task by increasing latency to the novel object (A) 
and decreasing novel object contacts (B). Female rats had shorter latency to the novel object than males (F1, 60 = 4.386; p = 0.040; η2 = 0.053; A). No 
effect of sex was observed on novel object contacts (B). No effect of MT was observed on recollective memory (A, B). Data for novel object latency 
was log transformed for analysis. Raw values are shown and error bars denote mean ± S.E.M. Analyzed by 3-way ANOVA with Fisher’s LSD multiple 
comparisons tests. ANOVA significance indicated by: *p ≤ 0.05; **p ≤ 0.01; ***p < 0.001; Post-hoc significance indicated by unique letters (p ≤ 0.05). 
Significant effects observed (A): CIH (F1, 60 = 14.011; p < 0.001; η2 = 0.141); Sex (F1, 60 = 4.386; p = 0.040; η2 = 0.053). Significant effects observed (B): CIH 
(F1, 60 = 9.664; p = 0.003; η2 = 0.131). CIH chronic intermittent hypoxia, MT MitoTEMPOL

Fig. 6  Motor function. Female rats traveled farther in the open field than males (A). No effect of CIH or MT was observed in the open field 
(A). Distance traveled in the MOF was dependent on CIH, sex, and MT (B). CIH decreased MOF distance traveled in vehicle females, which 
was prevented by MT (B). CIH MT females had elevated MOF distance traveled compared to both normoxic vehicle males, and CIH MT males (B). 
In normoxic males, MT increased MOF distance traveled, but this effect was not seen in CIH males (B). Data for MOF distance traveled was log 
transformed for analysis. Raw values are shown and error bars denote mean ± S.E.M. Analyzed by 3-way ANOVA with Fisher’s LSD multiple 
comparisons tests. ANOVA significance indicated by: **p ≤ 0.01; Post-hoc significance indicated by unique letters (p ≤ 0.05). Significant effect 
observed (A): Sex (F1, 60 = 10.598; p = 0.002; η2 = 0.136). Significant effects observed (B): CIH (F1, 64 = 4.706; p = 0.034; η2 = 0.058); CIH X Sex X MT (F1, 

64 = 6.683; p = 0.012; η2 = 0.083). CIH chronic intermittent hypoxia, MOF modified open field, MT MitoTEMPOL
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CIH, sex, and mtOS with MT on distance traveled in the 
MOF (p = 0.012; Fig. 6B). Specifically, CIH reduced MOF 
distance traveled in vehicle females, which was blocked 
by mtOS inhibition using MT (p ≤ 0.05). CIH did not 
impact fine motor function (distance traveled) in males. 
However, inhibition of mtOS did increase fine motor 
function in normoxic males (p ≤ 0.05). No effects of CIH, 
sex, or MT, were observed on other measures of fine 
motor function—assisted rears, unassisted rears, total 
rears, or footfalls in a modified open field (Additional 
file 1: Table S3).

No effects of sex or CIH on anxiety‑like behavior in an open 
field
We examined anxiety-like behaviors using a large novel 
open field (60.96 × 60.9 × 38.1 cm) by quantifying the fre-
quency and duration of entries within the center of the 
large open field. No effects of CIH or sex were observed 
on anxiety-like behaviors—center duration or center 
entries (Fig. 7). However, inhibition of mtOS did decrease 
open field anxiety-like behaviors, as evidenced by 
decreased center duration (p = 0.009; Fig. 7A) and center 
entries (p = 0.008; Fig. 7B).

CIH increased compulsive behavior in male rats 
that was prevented by blocking mitochondrial oxidative 
stress
We examined the effects of CIH, sex, and mtOS inhi-
bition on compulsivity using the marble burying task. 
We observed multiple significant interactions on mar-
ble burying between: (1) CIH and sex (p = 0.013), (2) 
CIH and MT (p = 0.020), and (3) MT and sex (p = 0.039; 

Fig. 8). CIH increased marble burying in vehicle males 
(p ≤ 0.05), which was prevented by blocking mtOS with 
MT. However, CIH did not affect marble burying in 
vehicle females. Inhibiting mtOS in normoxic females 
increased marble burying (p ≤ 0.05).

Fig. 7  Anxiety-like behavior. Inhibiting mitochondrial oxidative stress reduced center duration (A) and center entries (B) in an open field arena 
(60.96 × 60.9 × 38.1 cm). No effects of CIH or sex were observed on center entries or center duration. Raw values are shown and error bars denote 
mean ± S.E.M. Analyzed by 3-way ANOVA with Fisher’s LSD multiple comparisons tests. ANOVA significance indicated by: **p ≤ 0.01; Post-hoc 
significance indicated by unique letters (p ≤ 0.05). Significant effect observed (A): MT (F1, 60 = 7.434; p = 0.008; η2 = 0.110). Significant effect observed 
(B): MT (F1, 60 = 7.301; p = 0.009; η2 = 0.101). CIH chronic intermittent hypoxia, MT MitoTEMPOL

Fig. 8  Compulsive behaviors. CIH increased marble burying 
in vehicle male rats, but not in vehicle females. MT prevented 
CIH from increasing marbles buried in males. In MT females, CIH 
decreased marble burying, with no effect in MT males. MT increased 
marble burying in normoxic females, but not in normoxic males. 
Raw values are shown and error bars denote mean ± S.E.M. Analyzed 
by 3-way ANOVA with Fisher’s LSD multiple comparisons tests. 
ANOVA significance indicated by: **p ≤ 0.01; Post-hoc significance 
indicated by unique letters (p ≤ 0.05). Significant effects observed: 
CIH X Sex (F1, 64 = 6.499; p = 0.013; η2 = 0.075); CIH X MT (F1, 64 = 5.669; 
p = 0.020; η2 = 0.065); MT X Sex (F1, 64 = 4.437; p = 0.039; η2 = 0.051). CIH 
chronic intermittent hypoxia, MT MitoTEMPOL
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Discussion
The major findings of this study are 1) 14-day CIH-
induced OS and inflammation are sex- and mtOS-
dependent, whereas 2) 14-day CIH-induced behavioral 
changes are dependent on multiple factors that include 
sex and mtOS. Specifically, we found that CIH increased 
inflammation and fine motor dysfunction in female rats, 
which was blocked by inhibiting mtOS. Conversely, CIH 
increased circulating OS and compulsive behavior in 
males, which was blocked by inhibiting mtOS. However, 
we observed no sex differences in CIH-induced recol-
lective memory impairment. Both male and female rats 
exposed to CIH performed worse than normoxic con-
trols in the novel object recognition task, which was 
unaffected by inhibition of mtOS.

This study is the first study to examine the effects 
of CIH on inflammatory cytokines in females, along 
with the first study to compare sex differences in CIH-
induced inflammatory cytokines. We observed that CIH 
increased circulating IL-6 levels, decreased IL-10 levels, 
and increased IL-6/IL-10 ratio in females. IL-6 is a pleio-
trophic cytokine that is associated with many inflamma-
tory diseases [98], whereas IL-10 is an anti-inflammatory 
cytokine that is linked with downregulating the effects of 
IL-6 in the immune response [101, 104]. The IL-6/IL-10 
ratio indicates the status of pro-inflammatory and anti-
inflammatory processes in circulation [102, 104]. Few 
studies have examined sex differences in basal plasma 
cytokine levels; however, female rats typically have higher 
levels of IL-6 and TNF-α than males [105, 106]. In our 
study, we observed no sex differences in the level of any 
cytokines, which is consistent with other studies examin-
ing sex and cytokine levels in plasma [105, 106].

Although prior studies examining the impact of CIH 
on the immune system have only examined male rodents, 
they observed increased pro-inflammatory cytokines 
IL-6, TNF-α, and IL-1β in the circulation in response to 
CIH [53, 54, 107, 108]. In contrast to these studies, our 
study found that CIH did not impact IL-6, TNF-α, or 
IL-1β levels in male rats. This negative finding is consist-
ent with our previous publication that showed no effect 
of CIH on IL-6 levels or TNF-α levels [6]. One pos-
sible explanation for this discrepancy in CIH-induced 
cytokine levels in males could be the CIH protocol. Our 
studies utilized a CIH protocol with an AHI of 10 (10 
hypoxic episodes/hr/over 8  h/day) to model mild sleep 
apnea in humans [31, 79]. In contrast, other laborato-
ries used different CIH protocols in male rats that range 
in AHIs of 30–40 with similar CIH protocol duration 
(8  h/day; 14–21  days) [54, 107, 108], which is consist-
ent with severe sleep apnea in humans [31]. This could 
indicate that the inflammatory response to CIH in males 
is dependent on AHI severity. Though CIH primarily 

increased pro-inflammatory cytokines in females, MT 
was observed to reduce pro-inflammatory cytokines in 
both sexes and stimulated anti-inflammatory cytokines in 
females. These results support previous findings that MT 
and similar compounds can reduce pathogenic inflam-
matory states in response to injury or illness [109, 110].

Similar to our cytokine data, we observed sex differ-
ences in circulating oxidized protein levels (AOPP). Con-
sistent with prior reports [6, 55, 56], we found that CIH 
increased AOPP concentrations in male rats. However, 
this is the first study to show that CIH-elevated AOPP 
in male rats was mediated by mtOS. In contrast to male 
rats, CIH did not increase AOPP in female rats, which is 
consistent with other studies showing no effects of CIH 
on circulating OS measures [55, 111]. We also found sex 
differences in basal circulating OS, in which normoxic 
female rats had higher OS levels than male rats. This find-
ing is consistent with clinical data wherein women fre-
quently exhibit higher circulating OS than men [41–43].

This study is the first to examine the effects of CIH 
exposure on circulating steroid hormones in male and 
female rats. CIH did not affect circulating steroid hor-
mone levels in any measured hormone, regardless of sex. 
As expected, testosterone and progesterone levels were 
dependent on sex, whereas estradiol and corticosterone 
were not different between sexes. These results are con-
sistent with previous studies measuring circulating tes-
tosterone, progesterone, and estradiol levels in rats [78, 
112–118]. However, the effects of sex on corticosterone 
are less clear, wherein prior studies have shown either 
higher corticosterone levels in females [119–122] or no 
sex differences [78]. Previous studies have found testos-
terone to be either reduced by CIH exposure in male rats 
[65] or unaffected by CIH exposure in male or female rats 
[123]. CIH exposure was not observed to affect estradiol 
levels in either male or female rats [123]. In male rats, 
corticosterone has been observed to be either increased 
by CIH [79, 124] or no effect of CIH was observed [65, 
79]. Prior studies have shown strain differences in 
response to CIH on steroid hormone levels [79]. Strain 
differences could explain why CIH did not affect steroid 
hormones in our rats, and why our findings are consist-
ent with previous studies that used Sprague Dawley rats 
in their experiments [79, 123].

This study is the first to examine sex differences in CIH-
induced behavior displayed by adult rats. We observed 
distinct sex differences in CIH-induced fine motor 
function impairment and compulsivity but not in CIH-
induced recollective memory impairments. CIH reduced 
fine motor function only in females, which was blocked 
by inhibiting mtOS. Since inhibiting mtOS decreased 
CIH-induced inflammation in females, we propose 
that a mtOS-inflammation feed-forward mechanism 
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is involved in CIH-induced fine motor impairment in 
females. Indeed, inflammation has been observed to 
impair motor behaviors [125, 126], which may be related 
to CIH-induced neuroinflammation in motor behavior-
associated brain regions in rats [6, 107]. 

This is the first study to examine the impact of CIH on 
marble burying. We observed that CIH increased com-
pulsive behavior in male rats but not female rats. Further, 
inhibition of mtOS blocked CIH-induced compulsivity 
in males. Since inhibiting mtOS decreased CIH-induced 
OS in our males and CIH increases OS damage to brain 
regions [6, 63, 127] associated with marble burying 
behavior (e.g., hippocampus, orbitofrontal cortex, stria-
tum) [84, 128, 129], mtOS may be one of the primary 
mechanisms in CIH-induced compulsivity in male rats.

We did not observe any sex differences in CIH-induced 
recollective memory impairment. Consistent with prior 
studies showing CIH-induced impairments in recollec-
tive memory in male rodents [57–59], we also found that 
CIH impaired recollective memory in male rats. CIH also 
decreased recollective memory in females, and our study 
is the first to examine these relationships. Interestingly, 
inhibiting mtOS did not prevent the effects of CIH on 
recollective memory. This indicates that a mtOS-inde-
pendent mechanism induced by CIH is impairing recol-
lective memory in both sexes. Although no prior studies 
have examined the effect of CIH on recollective mem-
ory in females, studies have examined sex differences in 
recollective memory in response to neurotoxins. These 
findings on sex differences in recollective memory were 
equivocal, in which some studies show no sex differences 
in recollective memory impairment [130, 131] or only 
males were impaired and not females [130, 132].

CIH had no effects on spatial learning and memory or 
anxiety-like behavior in either male or female rats. Our 
findings are consistent with prior reports demonstrat-
ing CIH did not impact spatial learning and memory in 
gonadally intact female mice [66]. However, in contrast to 
prior studies showing CIH impairment of spatial learn-
ing and memory in male rats [53, 60–62], we did not 
observe any effects of CIH on spatial learning and mem-
ory in males. Studies routinely report males exposed to 
CIH exhibit increased anxiety-like behaviors [58, 63, 
64], which was not observed in this study. It should be 
noted that these prior studies in which CIH induced spa-
tial learning and memory impairments and anxiety-like 
behaviors were conducted with different CIH protocols 
(AHI ranged from 40 to 60) [53, 58, 60–64] compared 
to our CIH protocol (AHI = 10). Indeed, a study using a 
CIH protocol with an AHI of 20 found no effect of CIH 
on spatial learning and memory in male rats [133], and 
another study using an AHI of 15 found no effects on 
anxiety-like behavior in the open field in male and female 

mice [66]. These findings indicate that CIH protocols 
with > 20 AHI is necessary to induce spatial learning and 
memory impairments and anxiety-like behaviors.

We also observed sex differences in learning and motor 
behaviors exhibited by our normoxic rats. Consistent to 
prior reports showing females exhibit greater recollec-
tive memory than males [134–136], we also found that 
females exhibited better recollective memory (shorter 
latency to novel object) than males. Prior studies have 
typically shown either male biases [78, 134, 137] or no 
sex differences in spatial learning via Morris water maze 
[137, 138]. Neither LI scores nor latency to platform dur-
ing the probe trial detected significant sex differences, 
which are consistent with previous studies [137, 138]. 
Consistent with prior reports, female rats showed greater 
locomotor activity than male rats in a large novel open 
field arena (60.96 × 60.9 × 38.1 cm) and no sex differences 
in a smaller novel open field (40.64 × 40.64 × 38.1 cm) [52, 
139]. Unlike these findings, we did not observe any sex 
differences in marble burying behavior in normoxic rats. 
The data on sex differences in marble burying is equivo-
cal, with some groups finding either no sex differences 
[140, 141], a female bias [142], or a male bias [78, 143].

Limitations
Although our study has many strengths ranging from 
examining a broad spectrum of circulating markers 
(inflammation, OS, steroid hormones) and multiple 
behavioral domains, there are some limitations. We did 
not assess estrous cycle in our female rats. It is probable 
that the variability in the female data is related to estrous 
cycle, as many of the outcomes measured in our study 
could be influenced by estrogen status [144–146]. How-
ever, we did not want to introduce a stress response by 
conducting vaginal smears [147], nor introduce a variable 
that could not be conducted on the male rats. Notably, 
we did not observe any effects of CIH on estradiol or 
progesterone levels in females, which could indicate that 
estrous cycling was unaffected by CIH. Additionally, we 
did not determine the brain concentrations of MT. How-
ever, our data showing behavior responses to MT, data 
showing that MT has similar membrane permeability to 
TEMPOL [75], and data that TEMPOL penetrates the 
blood–brain-barrier [74] indicates that MT has actions at 
the level of the brain.

Perspectives and significance
Our data indicates that mild CIH (AHI = 10) can have 
significant impacts on multiple domains, such as circu-
lating OS and inflammation, recollective memory, fine 
motor function and compulsivity. Furthermore, most 
of these CIH effects are sex- and mtOS-dependent 
with the exception of recollective memory impairment. 
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This is of concern, as patients with sleep apnea with 
AHIs < 15 are classified as having mild OSA [14, 16, 18], 
and therefore may not receive treatment due to fewer 
reported quality of life impairments [4, 148, 149]. This 
lack of treatment for mild OSA can affect women more 
than men, as women are more likely to present with 
mild OSA or be underdiagnosed with OSA [4, 5]. We 
also show that many of the sex-dependent effects of 
CIH are mediated through mtOS, which may be a plau-
sible target for therapeutics aimed at 15–40% of OSA 
patients that are unable to be effectively treated with 
CPAP machines [26–28].
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Additional file 1: Table S1. Circulating steroid hormones. Plasma steroid 
hormones were analyzed by high throughput multiplex. All values pre-
sented as mean ± SD. Analyzed by 3-way ANOVA with Fisher’s LSD multiple 
comparisons tests, n = 5–10/group. CIH: Chronic intermittent hypoxia; MT: 
MitoTEMPOL. Table S2. Morris water maze results. Latency and pathlength 
(cm) for rats to find the target location during the probe trial. Learning 
index was generated as the sum total of the average latency to the target 
of all trials in blocked means for each training day. All values presented 
as mean ± SD. Analyzed by 3-way ANOVA with Fisher’s LSD multiple 
comparisons tests, n = 5–8/group. CIH: Chronic intermittent hypoxia; MT: 
MitoTEMPOL. Table S3. Fine motor behavior in modified open field. Rear-
ing behavior and footfalls in an open field arena (40.64 × 40.64 × 38.1 cm) 
modified with a 2 cm elevated wire mesh platform. Rears were catego-
rized as assisted if the rat used forelimbs to brace against side of open 
field arena. All values presented as mean ± SD. Data for unassisted rears 
was square root transformed for analysis. Analyzed by 3-way ANOVA with 
Fisher’s LSD multiple comparisons tests, n = 6–13/group. CIH: Chronic 
intermittent hypoxia; MT: MitoTEMPOL. 
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